
Photométrie des astéroïdes et effets de sélection

Cas des objets à longue période et faible amplitude

Stéphane Fauvaud

Association T60

& Groupe européen d'observation stellaire

De la lumière !...

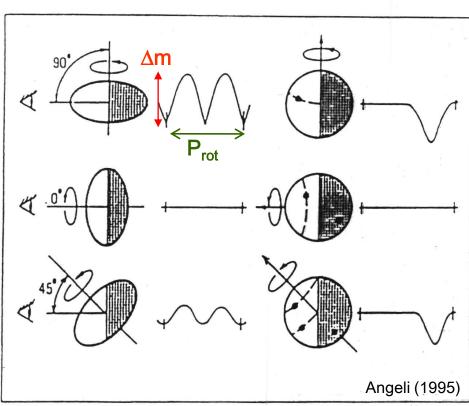
J. W. von Goethe

- La photométrie des astéroïdes
- Modélisation des astéroïdes (exemples de résultats)
- Eléments statistiques sur les objets brillants
- Un programme d'observation
- Conclusion et perspectives

La photométrie est l'étude du flux lumineux des objets

Une courbe de lumière (CdL) représente l'évolution temporelle du flux lumineux

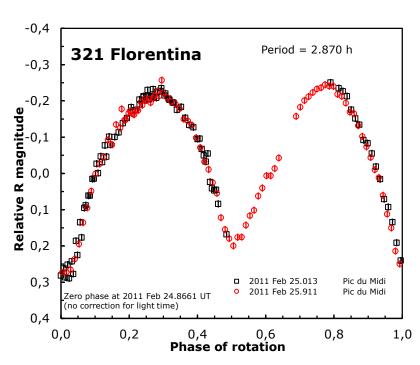
La luminosité/CdL d'un astéroïde dépend de divers paramètres


- Distance, géométrie d'éclairement de l'objet
- Forme, période et inclinaison de l'axe de rotation
- Variation d'albédo
- Multiplicité
- · Activité soudaine...

CdL: l'effet de forme domine

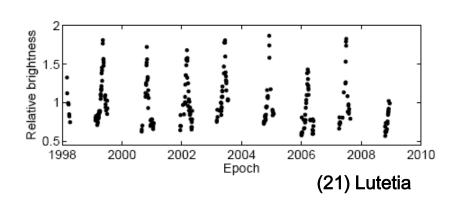
Ellipsoïde triaxial (a > b > c)

 $a/b \ge 10^{-0.4\Delta m}$


 $\begin{array}{c} \text{P\'eriode de} \\ \text{P\'eriodicit\'e de la courbe} & \longrightarrow \\ \text{rotation} \\ \text{synodique} \\ \text{(P}_{\text{rot}}) \end{array}$

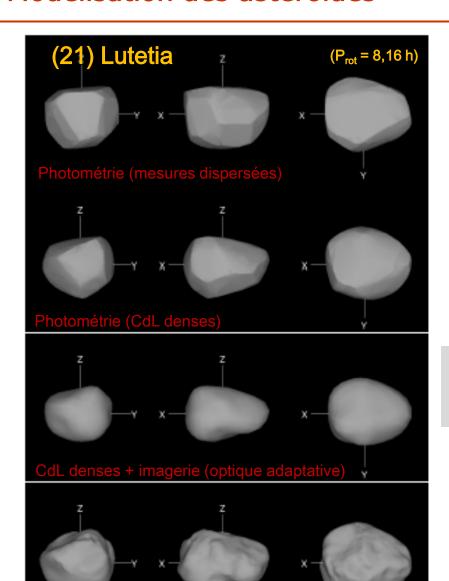
Types de données photométriques

Courbes de lumière « denses »


Echantillonnage temporel élevé

Fauvaud et al. (2011)

Mesures photométriques dispersées dans le temps


Une ou quelques mesures par nuit durant plusieurs années

Ďurech et al. (2015)

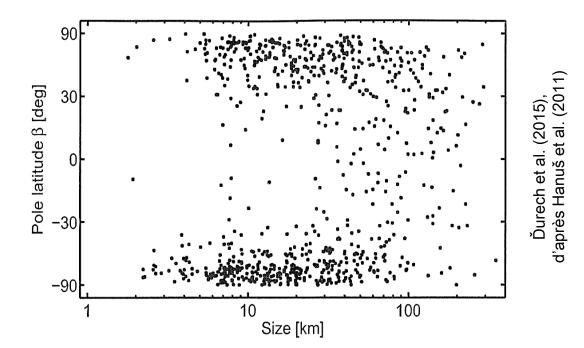
Technique	Période de rotation	Orientation de l'axe de rotation	Taille	Forme	Inertie thermique
Photométrie	\Diamond	\Diamond		\Diamond	
Imagerie au sol		\Diamond	\Diamond	\Diamond	
Occultations stellaires		\Diamond	\Diamond	\Diamond	
Radar	\Diamond	\Diamond	\Diamond	\Diamond	
Thermographie infra-rouge			\Diamond		\Diamond
Polarimétrie			\Diamond		
Interférométrie		\Diamond	\Diamond	\Diamond	
Sondes spatiales	\Diamond	\Diamond	\Diamond	\Diamond	\Diamond

D'après Ďurech et al. (2015)

Modélisation par techniques inverses multi-données, multi-sources

Database of Asteroid Models from Inversion Techniques (DAMIT, Ďurech et al. 2010)

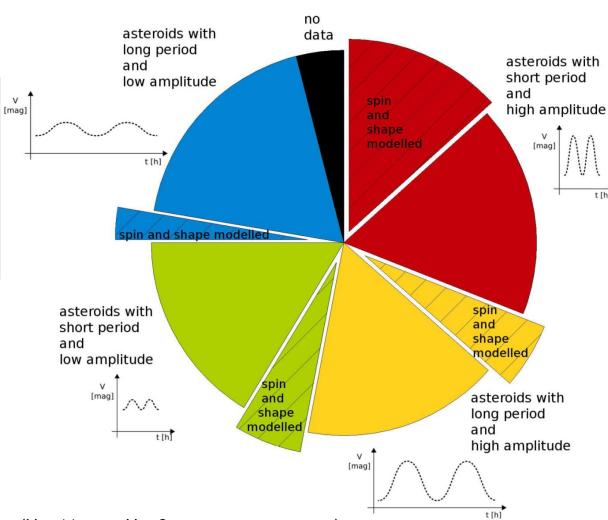
Modèles 3D pour ~ 400 astéroïdes


Distribution de l'orientation des axes de rotation

Astéroïdes ≤ 30 km

Obliquités ~ 0 ou 180° (β élevé) (effet YORP)

Astéroïdes ≥ 60 km


Excès d'objets à rotation directe (accrétion à partir des planétésimaux du disque protoplanétaire)

- Nombreux modèles basés sur des mesures photométriques dispersées
- Erreur moyenne (photométrie) des catalogues astrométriques : ~ 0,1 mag
- Le **bruit de mesure** domine les données pour les objets **faiblement allongés** et/ou ceux dont l'axe de rotation est **fortement incliné** sur l'écliptique

Astéroïdes brillants (H ≤ 11 mag)

- Près de la moitié des objets ont une période de rotation
 « longue » (≥ 12 h)
- Près de la moitié des objets ont une amplitude maximale de variation lumineuse « faible » (≤ 0,25 mag)

1230 astéroïdes de la ceinture principale (H ≤ 11 mag, U ≥ 2 ; LCDB, Warner et al. 2009)

Période courte/longue (\lessgtr 12 h) ; Δm_{max} faible/élevée (\lessgtr 0,25 mag)

Marciniak et al. (2015)

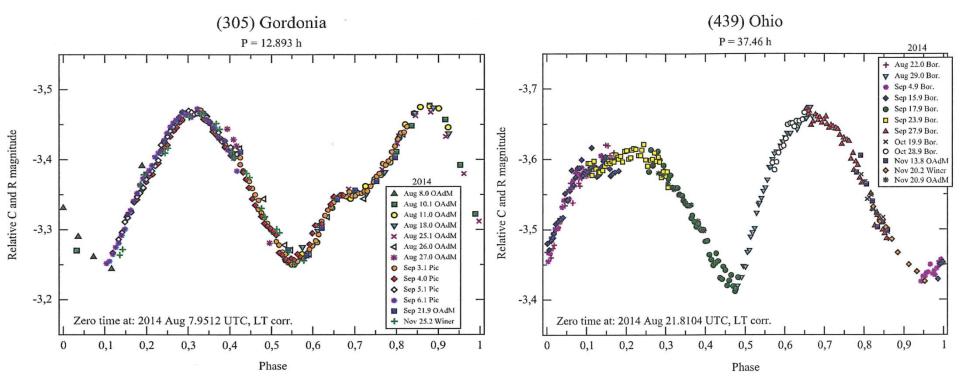
L'échantillonnage des modèles de forme et de rotation est sur-représenté par les objets :

- à rotation rapide
- allongés
- avec des obliquités faibles ou fortes (~ 0 ou 180°)

Les objets à longue période de rotation et à faible amplitude sont peu (ré-)observés au cours de leurs apparitions successives

Anna Marciniak (principal investigator)

Astronomical Observatory Institute, Adam Mickiewicz University, Poznań, Poland


Sélection de 120 astéroïdes 34 observés*

+ F. Pilcher, D. Oszkiewicz, T. Santana-Ros, S. Urakawa, S. Fauvaud, P. Kankiewicz f, Ł. Tychoniec, M. Fauvaud, R. Hirsch, J. Horbowicz, K. Kamiński, I. Konstanciak, E. Kosturkiewicz, M. Murawiecka, J. Nadolny, K. Nishiyama, S. Okumura, M. Polińska, F. Richard, T. Sakamoto, K. Sobkowiak, G. Stachowski, P. Trela

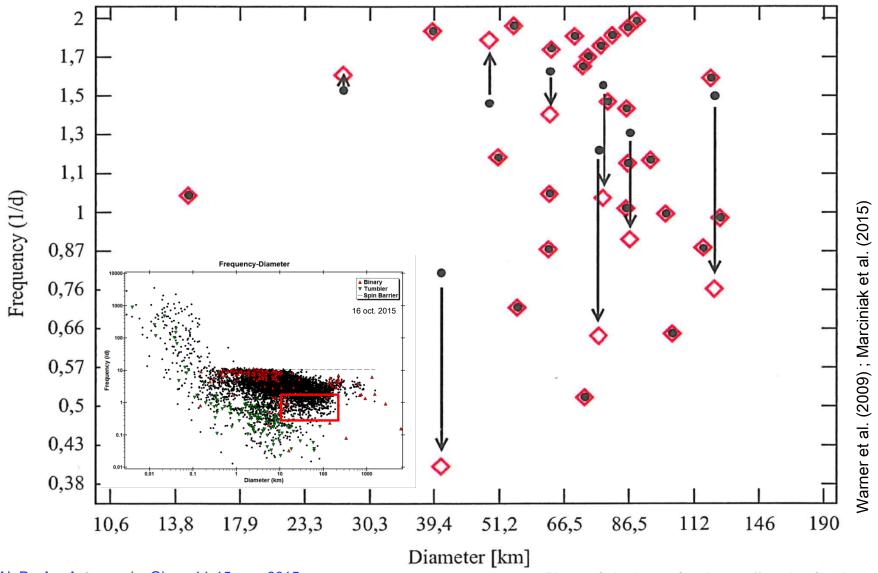
Observatoire	Localisation (lat., long. [°])	Diamètre (m) du/des télescope(s)
Observatoire de Borowiec (Pologne)	52 N, 17 E	0,4
Observatoire de Montsec (Catalogne, Espagne)	42 N, 01 E	0,8
Observatoire Organ Mesa (NM, USA)	32 N, 107 W	0,35
Observatoire Winer (AZ, USA)	32 N, 111 W	0,7
Bisei Spaceguard Center (Okayama, Japon)	35 N, 134 E	0,5 et 1
Observatoire astronomique du Mt. Suhora (Pologne)	50 N, 20 E	0,25 et 0,6
Observatoire astronomique JKU (Kielce, Pologne)	51 N, 21 E	0,35
Observatoire du Pic du Midi (France)	43 N, 0 E	0,6

^{*} A. Marciniak et al., 2015, Against the biases in spins and shapes of asteroids, *Planetary and Space Science*, sous presse

Nouvelles courbes de lumière... et nouvelles périodes

Période (LCDB) = 16,2 h Nouvelle période = 12,893 h Période (LCDB) = 19,2 h Nouvelle période = 37,46 h

Marciniak et al. (2015)


Périodes révisées pour 8 des 34 astéroïdes

Astéroïde	Diamètre (km)	Période (h) (LCDB)	Période (h) (nouvelle valeur)
70 Panopaea	122.17	15.797	31.619 ± 0.007
159 Aemilia	124.97	24.476	24.485 ± 0.002
172 Baucis	62.43	27.417	27.402 ± 0.005
195 Eurykleia	85.71	16.521	16.518 ± 0.002
202 Chryseis	85.58	23.670	23.668 ± 0.002
219 Thusnelda	40.56	29.842	59.74 ± 0.02
227 Philosophia	86.90	18.048	26.467 ± 0.01
236 Honoria	86.20	12.333	12.338 ± 0.002
301 Bavaria	54.27	12.253	12.243 ± 0.002
305 Gordonia	49.17	16.2	12.893 ± 0.002
329 Svea	77.83	15.201	22.778 ± 0.006
335 Roberta	89.10	12.054	12.027 ± 0.003
380 Fiducia	73.19	13.69	13.70 ± 0.02
387 Aquitania	100.51	24.144	24.13 ± 0.01
395 Delia	50.98	19.71	19.680 ± 0.005
439 Ohio	76.57	19.2	37.46 ± 0.01
476 Hedwig	116.76	27.33	27.246 ± 0.005

Astéroïde	Diamètre (km)	Période (h) (LCDB)	Période (h) (nouvelle valeur)
478 Tergeste	79.46	16.104	16.105 ± 0.001
483 Seppina	69.37	12.727	12.719 ± 0.002
487 Venetia	63.15	13.28	13.342 ± 0.002
501 Urhixidur	77.06	13.1743	13.175 ± 0.002
524 Fidelio	71.73	14.198	14.177 ± 0.005
538 Friederike	72.34	46.728	46.7 ± 0.3
618 Elfriede	120.37	14.801	14.800 ± 0.005
653 Berenike	39.18	12.4886	12.481 ± 0.006
666 Desdemona	27.22	15.45	14.607 ± 0.004
667 Denise	80.85	12.687	12.686 ± 0.003
672 Astarte	14.54	22.572	22.588 ± 0.005
780 Armenia	94.40	19.891	19.89 ± 0.01
788 Hohensteina	103.29	37.176	37.13 ± 0.05
806 Gyldenia	62.82	14.45	16.852 ± 0.006
907 Rhoda	62.73	22.44	22.45 ± 0.01
980 Anacostia	86.19	20.117	20.113 ± 0.004
1062 Ljuba	55.10	33.8	33.79 ± 0.02

Marciniak et al. (2015)

Diagramme fréquence de rotation-diamètre modifié

Conclusion et perspectives

Un bilan (provisoire)

- Les astéroïdes à longue période et faible amplitude sont sous-étudiés
- Dans l'échantillon d'objets observés, un quart d'entre eux avaient une période de rotation erronée
- La poursuite du programme de suivi photométrique est justifiée pour valider et compléter les données existantes et obtenir de nouveaux modèles de forme 3D
- Objectif : mieux connaître la **nature physique** des petits corps (effets non-gravitationnels, densité, structure interne...)
- Les **amateurs** peuvent apporter une contribution par des collaborations avec les professionnels

Diego Aranega, Le Canard Enchaîné, N° 4957, 28 octobre 2015

Suggestions bibliographiques et webographiques

Bases de données

The Asteroid Lightcurve Database (B. Warner)

http://www.minorplanet.info/lightcurvedatabase.html

Courbes de lumière d'astéroïdes, de comètes et d'étoiles variables (R. Behrend)

http://obswww.unige.ch/~behrend/page_cou.html

Database of Asteroid Models from Inversion Techniques (J. Ďurech)

http://astro.troja.mff.cuni.cz/projects/asteroids3D/web.php

Revue

The Minor Planet Bulletin

http://www.minorplanet.info/minorplanetbulletin.html

Articles

Ďurech, J., Carry, B., Delbo, M., Kaasalainen, M., & Viikinkoski, M., 2015, Asteroids models from multiple data sources, in: P. Michel, F. E. DeMeo, & W. F. Bottke Jr. (eds), 2015, *Asteroids IV*, The University of Arizona Press, à paraître

Marciniak, A., Pilcher, F., Oszkiewicz, D., and 21 co-authors, 2015, Against the biases in spins and shapes of asteroids, *Planetary and Space Science*, sous presse

Marciniak, A., Pilcher, F., Oszkiewicz, D., Santana-Ros, T., Urakawa, S., Fauvaud, S., Kankiewicz, P., Kamiński, K., Kudak, V., & Ogłoza, W., 2015, *EPSC Abs.* 10, Selection effects in spins and shapes of asteroids, EPSC2015-85

Autre

Asteroid Lightcurve Data Exchange Format (ALCDEF)

http://www.minorplanet.info/alcdef.html

