Le vitesses radiales à haute précision

Francesco Pepe

Université de Genève Departement d'Astronomie

51 Peg b: La première

 $Mpl = 0.5 M_{Jup}$ P = 4.2 Joursa = 0.04 AE

Observatoire de Haute-Provence Octobre 1995

Michel Mayor – Didier Queloz

Effet Doppler - Vitesses Radiales

Effet Doppler - Vitesses Radiales

La mesure Doppler

Principes d'un spéctrographe

I pixel -> monochromatezr (balaiage en longueur d'onde) Trame de pixels -> spectrograph (tout le spectre simultanément)

La 'construction' d'un spectre à échelle

La 'construction' d'un spectre à échelle

Plan focal intermédiaire 'le spectre blanc'

Tous les ordres superposés

Image monochromatique de la fente!

a

Configuration de HARPS

Simultaneous ThAr Reference

Vacuum vessel

(Reference fiber)

Object fiber

Image Scrambler/ iodine cell

Temperature control

La stabilité, une nécessité

 $\Delta RV = 0.1 \text{ m/s}$ $\Delta\lambda = 0.000001 \text{ A}$ 1.5 nm 1/10'000 pixel

 $\Delta RV = 0.1 \text{ m/s}$ I $\Delta T = 0.001 \text{ K}$ $\Delta p = 0.001 \text{ mBar}$

Vacuum operation

Temperature control

Expansion thermique du CCD

Marco Gullieuszik, ESO

La technique de la référence simultanée

0

Le bruit photonique Pour un spectrographe style HARPS: $R > 100'000, \varepsilon_{Tot} = 6\%$

1) HARPS/ 3.6m

I m/s in 15' on V=10 star
 -> ~50 cm/s on VLT
 -> ~10 cm/s on E-ELT

2) ESPRESSO/VLT Vlim = ~8 for 10 cm/s in 15' => Many solar-type stars ~700 non-active stars => Earth twin search TRANSITS (TESS/CHEOPS)

3) HIRES/E-ELT

I cm/s on star with V<6 I0 cm/s on V=II-I2 stars TRANSITS (PLATO)

SNR, précision & Co.

$$\varepsilon_{x} = \frac{\sqrt{\sigma_{ix}^{2} + \sigma_{Rx}^{2}}}{\sqrt{2I'_{0}} \cdot EW_{x}} \cdot \sqrt{\left(1 - \frac{c}{2}\right) + n_{c} \cdot \left(\frac{I_{D}}{I'_{0}} \cdot t + \frac{1}{b_{c} \cdot b_{R}} \cdot \frac{RON^{2}}{I'_{0}}\right) + \frac{I'_{s}}{I'_{0}}}$$

$$\varepsilon_{EW} = \frac{\sqrt{2}\sqrt{\sigma_{ix}^{2} + \sigma_{Rx}^{2}}}{\sqrt{I'_{0}} \cdot EW_{x}} \cdot \sqrt{\left(1 - \frac{c}{2}\right) + n_{c} \cdot \left(\frac{I_{D}}{I'_{0}} \cdot t + \frac{1}{b_{c} \cdot b_{R}} \cdot \frac{RON^{2}}{I'_{0}}\right) + \frac{I'_{s}}{I'_{0}}}$$

Conservation of the 'étendue'

- The étendue is defined as E=A x O, where A is the area of the beam at a given optical surface and O is the solid angle under which the beam passes through the surface.
- When following the optical path of the beam through an optical system, E is constant, in particular, it cannot be reduced
- For a telescope, E is the product of the primary mirror surface and the two-dimensional field (in sterad) transmitted by the optical system. Normally, the transmitted field is defines a slit width. When entering spectrograph, the slit x beam aperture at the slit is equal to the etendue E of the telescope. This implies that at fixed spectral resolution, the slit width and the beam diameter cannot be chosen independently, since d Θ depends on both.

$$R \cdot \frac{D_T \cdot FOV}{D_C \cdot \tan \beta} = const \qquad N_{Pixels} \propto \frac{D_T^2 \cdot FOV^2}{D_C^2 \cdot \tan \beta}$$

Courtesy of ESO

ICUEP.

0.0

QE variations Boron implant / laser anneal (blue end), and fringing (red)

QE variations Boron implant / laser anneal (blue end), and fringing (red)

Beletic – High Performance Sensors for Exoplanet Astronomy – February 2011

La calibration

Limites de la lampe ThAr

The HARPS-N LFC

2900

e2v has provided us with new information to state that they now have a new stepper for stitching with 100 nm precision, and this stitch issue should no longer be an effect.

HARPS CCD stitch boundary effect

Beletic – High Performance Sensors for Exoplanet Astronomy – February 2011

Erreur de calibration et repétibilité

Erreur de calibration et repétibilité

Illumination effects

Slit-fed spectrograph

Fiber-fed spectrograph

Circular fibers alone do not scramble enough ...

Circular fibers alone do not scramble enough ...

Illumination effects: guiding tests

 Scramble stellar image
 Use telescope pupil as new entrance illumination
 Use octagonal fibers

CTE Problem: SNR test

CTE Problem: SNR test

CTI(Flux)

CTE Problem: solution

Contaminants: Atmosphere

Contaminants: Atmosphere

Contaminants: Close-by objects

Contaminants: Close-by objects

STELLAR INTRINSIC LIMITATIONS SLETCAR INTRINSIC LIMITATIONS

STELLAR INTRINSIC LIMITATIONS SLETCAR INTRINSIC LIMITATIONS

HD20794: Three Earth-mass planets

Parameter	[unit]	HD 20794 b	HD 20794 c	HD 20794 d
Epoch	[BJD]	2'454'783.40362208		
i	[deg]	90 (fixed)		
V	$[{\rm km}{\rm s}^{-1}]$	87.9525 (±0.0001)		
Р	[days]	18.315	40.114	90.309
		(±0.008)	(±0.053)	(±0.184)
λ	[deg]	169.0	149.4	16.2
		(±6.7)	(±10.0)	(±6.8)
е		0.0	0.0	0.0
		(fixed)	(fixed)	(fixed)
ω	[deg]	0.0	0.0	0.0
		(fixed)	(fixed)	(fixed)
Κ	$[m s^{-1}]$	0.83	0.56	0.85
		(±0.09)	(±0.10)	(±0.10)
<i>m</i> sin <i>i</i>	$[M_\oplus]$	2.7	2.4	4.8
		(±0.3)	(±0.4)	(±0.6)
а	[AU]	0.1207	0.2036	0.3499
		(±0.0020)	(±0.0034)	(±0.0059)
T _{eq}	[K]	660	508	388
N _{meas}			187	
Span	[days]		2610	
rms	$[m s^{-1}]$		0.82	
χ^2_r			1.39	

Précision au sub-m/s

En améliorant la précision

En améliorant la précision

Alpha Cen

La sensibilité des vitesses radiales

$$k_{1} = \frac{28.4 \text{ m s}^{-1}}{\sqrt{1 - e^{2}}} \frac{m_{2} \sin i}{M_{Jup}} \left(\frac{m_{1} + m_{2}}{M_{Sun}} \right)^{-2/3} \left(\frac{P}{1 \text{ yr}} \right)^{-1/3} \frac{1}{2}$$
(M₁ = Sun)
(M₁ = Sun)
Jupiter @ 1 AU : 28.4 m s⁻¹
Jupiter @ 5 AU : 12.7 m s⁻¹
Neptune @ 0.1 AU : 4.8 m s⁻¹
Neptune @ 1 AU : 1.5 m s⁻¹
Super-Earth (5 M _{\oplus}) @ 0.1 AU : 1.4 m s⁻¹
Super-Earth (5 M _{\oplus}) @ 1 AU : 0.45 m s⁻¹
Earth @ 1 AU : 9 cm s⁻¹

La sensibilité des vitesses radiales

$$k_{1} = \frac{28.4 \text{ m s}^{-1}}{\sqrt{1 - e^{2}}} \frac{m_{2} \sin i}{M_{Jup}} \left(\frac{m_{1} + m_{2}}{M_{Sun}} \right)^{-2/3} \left(\frac{P}{1 \text{ yr}} \right)^{-1/3} \frac{1}{2}$$

$$(M_{1} = \text{Sun})$$

$$(M$$

Pourquoi ESPRESSO serait meilleur?

Pourquoi ESPRESSO serait meilleur?

- Télescope plus grand (dont jusqu'à 4! Wow!)
- Capteurs monolithique et stabilisés (9k9 e2v)
- Fibres octogonal (ex-limitation dans HARPS!)
- Source de calibration adaptés (LFC/FP)
- Une pipeline de réduction puissante
- Flexibilité opérationnelle (4 télescope au choix, changement rapide)! -> Efficacité, échantillonnage en t

