Photométrie

regard théorique et illustré pour une bonne pratique

Raoul Behrend

Observatoire de Genève

Causerie au wetal'15

De quoi parlons-nous ?
– 2 mag : zénith-horizon
– 0,5 mag : WUMa, RRLyr
– 0,5 mag : origine des GSC-ACT, USNO- A2.0, etc.
– 0,1 mag : DSct
– 0,1 mag : vignettage
 – 0,05 mag : effet atmosphérique sur la couleur
– 0,02 mag : effet de l'obturateur en courte pose
– 0,02 mag : sensibilité variable dans un pixel - 1 mag !
– 0,02 mag : sensibilité pixel à pixel
– 0,01 mag : scintillation pour un 20cm en 10s
– 0,01 mag : transit profond
– 0,01 mag : linéarité d'un ccd/cmos
– 0,01 mag : recalage des bandes
– 0,001 mag : objectif pour un transit
 – 0,001 mag : bruit de grenaille pour 1 million d'électrons
– 0,0001 mag : limite actuelle au sol

Electronic Telegram No. 4157 Central Bureau for Astronomical Telegrams Mailing address: Hoffman Lab 209; Harvard University; 20 Oxford St.; Cambridge, MA 02138; U.S.A. e-mail: cbatiau@eps.harvard.edu (alternate cbat@iau.org) URL http://www.cbat.eps.harvard.edu/index.html Prepared using the Tamkin Foundation Computer Network (31450) 1999 CU9 D. Pray, Sugarloaf Mountain Observatory, South Deerfield, MA, U.S.A.; P. Pravec, K. Hornoch, J. Vrastil and H. Kucakova, Ondrejov Observatory; V. Benishek, Belgrade Astronomical Observatory, Serbia; R. Roy, Observatoire de Blauvac, France; R. Behrend, Geneva Observatory; D. Romeuf, Chapdes-Beaufort, France; B. Warner, Center for Solar System Studies, Eaton, CO, U.S.A.; A. Scholz and G. Hodosan, Observatory of the University of St. Andrews, U.K.; J. Pollock, Appalachian State University; R. Montaigut and A. Leroy, OPERA Observatory, France; and D. Reichart and J. Haislip, University of North Carolina, Chapel Hill, report that photometric observations obtained during Sept. 5-Oct. 13 reveal that minor planet (31450) is a binary system with an orbital period of 53.47 ± 0.07 hr. The primary shows a period of 3.4116 ± 0.0003 hr, and has a lightcurve amplitude of 0.24 mag at solar phases 5-9 deg. Mutual secondary eclipse/occultation events that are 0.05 magnitude deep indicate a lower limit on the secondary-to-primary mean-diameter ratio of 0.22.

2015 October 26

(C) Copyright 2015 CBAT (CBET 4157)

Daniel W. E. Green

Flux, magnitudes, atmosphère

■ m=-2,5 log₁₀(f/f_{ref})

- m=magnitude observée
- f=flux observé
- ▶ f_{ref}=flux de référence

Effet de l'atmosphère

- M=magnitude hors atmosphère (but !)
- m=M+a si monochromatique
- m=M+a+b C si bande pas trop large
- ► C=indice de couleur

Construction du catalogue

Un bon modèle métrologique modélise les cibles et les références

VVVVVRRRRR ou VRVRVRVRVR

 Réduire classiquement en refusant les termes de couleur

Compiler les données

- Valeur et incertitudes
- En déduire les couleurs
- Réduire la série complète avec termes de couleur
- Détection/rejet et retour à la compilation (3x)

Usage d'un catalogue

Ramasser les couleurs dans USNO-A2.0

- Erreurs systématiques jusqu'à 1mag
- Impossibilité de "piquer" une étoile de référence de bonne couleur
- couleur des variables pas fiable
- ▶ assigner une couleur plausible à la cible
- Compiler les données
- Réduire la série avec termes de couleur
- Détection/rejet et retour à la compilation (3x)

FMT DPFVv						
NOM (939) ISBERGA						
MES Etienne Morelle,	Raoul Behrend 0-09					
MER Sirene						
; La=7 Lp=35 boîte ago	randie a:libre b:=1	1.000 k:libre				
; 0001 RAP 0001=(939)	ISBERGA IC=1.0000					
; 0002 RAP 2000=A14003	38591 IC=0.9000					
; 0003 MES 2024=A14003	38209 IC=0.9000					
; 0004 RPH 2001=A14003	36258 IC=0.9000					
; 0005 RPH 2002=A14003	36259 IC=0.8000					
; 0006 RPH 2003=A14003	36282 IC=0.8000					
[]						
; 0041 RPH 2039=A14003	39227 IC=0.9000					
; JD TU Tpose	Fr C00001 c00001	C02000 c02000	C02024 c02024	R02001 r02001	R02002 r02002	
2455855.487094 20.000	- 13,4425 0,0043	12.0861 0.0025	17.5243 0.0827	12.9697 0.0034	15.9229 0.0211 1	
2455855.487521 20.000	- 13.4440 0.0042	12.0885 0.0025	17.4572 0.0774	12.9640 0.0034	15.8594 0.0200 1	
2455855.487949 20.000	- 13.4525 0.0042	12.0957 0.0025	17.3297 0.0690	12.9545 0.0033	15.8704 0.0200 1	
2455855.488377 20.000	- 13,4561 0,0042	12.0927 0.0025	17.6368 0.0906	12.9597 0.0034	15.8731 0.0201 1	
2455855.488806 20.000	- 13,4409 0,0042	12.0859 0.0025	17.6945 0.0961	12.9629 0.0034	15.8751 0.0203 1	
2455855.489233 20.000	- 13,4428 0,0042	12.0895 0.0025	17.6399 0.0911	12.9608 0.0034	15.8757 0.0202 1	
2455855.489661 20.000	- 13.4405 0.0042	12.0837 0.0025	17.5417 0.0832	12.9735 0.0034	15.9143 0.0207 1	
2455855.490086 20.000	- 13.4426 0.0042	12.0999 0.0025	17.5905 0.0869	12.9509 0.0033	15.8867 0.0203 1	
2455855.490513 20.000	- 13.4594 0.0042	12.0874 0.0025	17.5059 0.0807	12.9648 0.0034	15.8447 0.0197 1	
2455855.490941 20.000	- 13.4447 0.0042	12.0952 0.0025	17.4723 0.0789	12.9476 0.0033	15.8693 0.0202 1	
2455855.491369 20.000	- 13.4554 0.0042	12.0968 0.0025	17.7316 0.0987	12.9501 0.0033	15.8343 0.0195 1	
· · · · · · · · · · · · · · · · · · ·						
; Colonne	1	2	3	4	5	
;						
; Filtre: -						
;						
; Objet	RAP 0001	RAP 2000	MES 2024	RPH 2001	RPH 2002	
; Identité	(939) ISBERGA	A1400338591	A1400338209	A1400336258	A1400336259	
; Nombre	694	400	342	366	363	
; Moyenne brute	13.3397	12.0942	17.4876	12.9671	15.8715	
; Disp. brute	0.0656	0.0076	0.1129	0.0098	0.0305	
; Valeur min.	13.1914	12.0779	16.9168	12.9358	15.6722	
; Valeur max.	13.4784	12.1810	17.9196	12.9919	15.9564	
; Fourchette	0.2870	0.1031	1.0028	0.0561	0.2842	
;						
; Moyenne pond.	13.3393	12.0937	17.4634	12.9663	15.8703	
; Incertitude	0.0002	0.0002	0.0052	0.0002	0.0012	
; Disp. pond.	0.0656	0.0076	0.1155	0.0099	0.0306	
; Facteur disp.	13.1510	2.3018	1.2262	2.6635	1.2829	
; Anormalité	0.7288	2.2714	1.4803	0.9513	1.5515	
; Anormalité +	0.7064	3.8474	1.3469	0.8676	0.9405	
; Anormalité -	0.7512	0.6953	1.6138	1.0349	2.1625	

Effets instrumentaux

Du rêve à la réalité

- ► L=F t+Z+C
- ► L=P F t+Z+C

Limage Flux temps

- Zéro=bias Cosmiques
- Plat=flat

Noir=dark

- ► L=P F t+Z+N t+C
- \blacktriangleright L=P F (t_i-t_o)+Z+N t_c+C
- ► L=P F (t_i-t_o) +Z+N t_c +C+ Δ L : thermocouplage
- ► L=P F (t_i-t_o) +Z+N t_c +C+ Δ L+S : paraSites
- Dérive selon la température : $X := X + \Delta X(T)$
- temps t_o d'oburateur : une carte t_o aussi
- convolution avec les vibrations, le suivi, diffraction, mise au point, les aberrations, etc.
- certains parasites radioélectriques

Prétraitement

Capteur supposé linéaire

- $\blacksquare L = P F (t_i t_o) + Z + N t_c + C + \Delta L + S$
- Remonter à F n'est pas possible... à cause de C et la normalisation de P
- Combiner des images "identiques" permet de s'affranchir en partie de C
- AL peut parfois être mesuré avec les lignes et colonnes de bord !
- Si S est régulier, firltrage dans l'espace de Fourier

Non linéarité du capteur

Origines

- chaîne de sortie avec l'amplificateur
- convertisseur analogique/numérique
- Fuites internes des pixels
- défauts de transfert

Principes métrologiques généraux

- on n'utilise pas un capteur linéaire à plus que 2/3 de sa dynamique (si anti-bave : 1/2)
- le comportement dans le premier tiers de la pleine échelle est souvent très bien linéaire

Recette pour la haute précision

Application au transits exoplanétaires

- >5 pixels dans le coeur (flou, vibreur), >30s
- Guidage parfait, caméra thermorégulée
- Images de calibration :
 - ▶ même nuit, même logiciel, même configuration
- Pas bons : altazim : avec araignée en champ dense, on rejette; sans : grande méfiance, car dérotateur ! Cécédé "TV"
- Bons : lunettes, Schmid-Cassegrain
- Mesure et usage des couleurs

Trois méthodes

- Ouverture 5 mmag
 - "ciel+étoile" dans un disque
 - "ciel" dans un anneau
 - combinaison pour n'avoir qu'"étoile"
- Ajustement 10 mmag
 - "ciel", "ciel+gradient" dans un disque par une constante ou un plan
 - "étoile" par profil calé dans un disque, yc. le fond
- Soustraction d'image 1mmag
 - Recalage des images (rotation, translation, échelles, déformations)
 - Noyau de convolution inter-image (égalisation du flou)
 - Soustraction optimale
 - Mesure des résidus : ajustement contraint en position
 - Attention à la normalisation

Pourquoi la soustraction ?

- A mesurer: signal=(signal+fond)-fond
- Zone de fond contient :
 - du rien (défauts de correction du capteur)
 - des objets diffus (araignées, galaxie)
 - des étoiles faibles
 - ▶ le pied de l'étoile centrale
- Recette pour le fond (3 médiane-2 moyenne) ne marche pas !
- Zone de signal contient :
 Pareil en plus de l'objet à mesurer

Exemple

Fig. 4.8: Exemple de soustraction pendant la campagne I au CFHT en octobre 1999. A gauche, l'image co-additionnée de toutes les images référence, au milieu, l'image co-additionnée de toutes les images de recherche, et à droite, la soustraction. Le cercle est centrée sur une supernova identifiée par la suite à z = 0.87.

Sébastien Fabbro, Photométrie de supernovae et applications cosmologiques, thèse, 2001
 Voir aussi Swarp, Terapix, Isis

Photométrie d'ouverture

Mesure de l'intensité dans un disque centré sur la cible...

Avantage

- Boîte allongée pour le suivi à mi-vitesse des géovoisineurs
- Difficultés
 - Disque
 - Centré
 - Rayon
 - Solution de choix : intégration de l'interpolant

Photométrie par ajustement

Ajustement d'une fonction idoine sur le profil de la cible...

Avantage

- mesure le signal là où il y a de l'énergie
- en principe moins de bruit
- Difficultés
 - comas et aberrations hors du noyau font que l'ajustement n'est pas toujours parfait
 - dérives durant la nuit
 - auto-guidage fortement recommandé

En résumé

- Difficulté*Incertitude≥1
- Pas de catalogue général profond tribande
 - USNO-A2.0 en attendant Gaïa

Mesure isolée

- catalogue spécialisé
- photométrie absolue (Landolt, Genève)
- Grappes de mesures
 - catalogue personnel propre à un champ
 - Iarge bande pour CdR+CdL classiques
 - bande standard pour transits (plutôt dans le rouge)

- Berna
 - ▶ ρ=1,1 kg/l r=27 km
- Debussy
 - ▶ ρ=0,8 kg/l r=14 km
- Frostia
 - ▶ ρ=0,75 kg/l r=27 km
- Atami
 - ▶ ρ=1,3 kg/l r=21 km

Epicerie...

Densité de rangement des sphères

- ▶ en vrac : 60%
- ▶ secouées dans une boîte : 64%
- empilement d'oranges : 74%

Astronomy & Astrophysics manuscript no. hanus_2015_models_AA_final October 21, 2015

© ESO 2015

New and updated convex shape models of asteroids based on optical data from a large collaboration network

J. Hanuš^{1,2,*}, J. Ďurech³, D.A. Oszkiewicz⁴, R. Behrend⁵, B. Carry², M. Delbo², O. Adam⁶, V. Afonina⁷,
R. Anquetin⁸, P. Antonini⁹, L. Arnold⁶, M. Audejean¹⁰, P. Aurard⁶, M. Bachschmidt⁶, B. Baduel⁶, E. Barbotin¹¹,
P. Barroy⁸, P. Baudouin¹², L. Berard⁶, N. Berger¹³, L. Bernasconi¹⁴, J-G. Bosch¹⁵, S. Bouley⁸, I. Bozhinova¹⁶,
J. Brinsfield¹⁷, L. Brunetto¹⁸, G. Canaud⁸, J. Caron^{19,20}, F. Carrier²¹, G. Casalnuovo²², S. Casulli²³, M. Cerda²⁴,
S. Charbonnel²⁵, B. Chinaglia²², A. Cikota²⁶, F. Colas⁸, J-F. Coliac²⁷, A. Collet⁶, J. Coloma^{28,29}, M. Conjat²,
E. Conseil³⁰, R. Costa^{28,31}, R. Crippa³², M. Cristofanelli³³, Y. Darmedji³⁴, A. Debackere³⁵, A. Decock³⁴, Q. Déhais³⁶,
T. Déléage³⁵, S. Delmelle³⁴, C. Demeautis³⁷, M. Drozdz³⁸, G. Dubos⁸, T. Dulcamar⁶, M. Gillon³⁴, R. Gurkee³⁹,
R. Dymock⁴⁰, N. Esseiva⁴¹, R. Esseiva⁴¹, M. Esteban^{24,42}, T. Fauchez³⁴, M. Fauerbach⁴³, M. Fauvaud^{44,45},
S. Fauvaud^{44,45,8}, E. Forné^{28,46}, D. Fradel⁸, J. Garlitz⁴⁷, O. Gerteis⁶, C. Gillier⁴⁸, M. Gillon³⁴, R. Giraud³⁴,
J-P. Godard⁸, R. Goncalves⁴⁹, H. Hamanowa⁵⁰, H. Hamanowa⁵⁰, K. Hay¹⁶, S. Hellmich⁵¹, S. Heterier^{52,53},
D. Higgins⁵⁴, R. Hirsch⁴, G. Hodosan¹⁶, M. Hren²⁶, A. Hygate¹⁶, N. Innocenf⁶, H. Jacquinot⁵⁵, S. Jawahar⁵⁶,
E. Jehin³⁴, L. Jerosimic²⁶, A. Klotz^{57,58,6}, W. Koff⁵⁹, P. Korlevic²⁶, E. Kosturkiewicz³⁸, P. Krafft⁶, Y. Krugly⁶⁰,
F. Kugel¹⁹, O. Labrevoir⁶, J. Lecacheux⁸, M. Lehky⁶¹, A. Leroy^{8,62,63}, B. Lesquerbault⁶, M.J. Lopez-Gonzales⁶⁴,
M. Lutz⁶, B. Mallecot⁸, J. Manfroid³⁴, F. Manzini³², A. Marciniak⁴, A. Martin^{65,66}, B. Modave⁶, R. Montaigut^{8,48,63},
J. Montier^{52,53}, E. Morelle²⁷, B. Morton¹⁶, S. Suotlo³¹, R. Naves⁶⁷, J. Nomen²⁶, J. Oey⁶⁸, W. Ogloza³⁸, M. Paiella³³,</l

(Affiliations can be found after the references)

